Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Biomedicines ; 11(7)2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37509586

ABSTRACT

Recently, we have achieved substantial progress in our understanding of brain injury and neurodegeneration [...].

2.
Exp Neurol ; 361: 114320, 2023 03.
Article in English | MEDLINE | ID: mdl-36627040

ABSTRACT

Endocannabinoids [2-arachidonoylglycerol (2-AG) and N-arachidonoylethanolamine (AEA)], endogenously produced arachidonate-based lipids, are anti-inflammatory physiological ligands for two known cannabinoid receptors, CB1 and CB2, yet the molecular and cellular mechanisms underlying their effects after brain injury are poorly defined. In the present study, we hypothesize that traumatic brain injury (TBI)-induced loss of endocannabinoids exaggerates neurovascular injury, compromises brain-cerebrospinal fluid (CSF) barriers (BCB) and causes behavioral dysfunction. Preliminary analysis in human CSF and plasma indicates changes in endocannabinoid levels. This encouraged us to investigate the levels of endocannabinoid-metabolizing enzymes in a mouse model of controlled cortical impact (CCI). Reductions in endocannabinoid (2-AG and AEA) levels in plasma were supported by higher expression of their respective metabolizing enzymes, monoacylglycerol lipase (MAGL), fatty acid amide hydrolase (FAAH), and cyclooxygenase 2 (Cox-2) in the post-TBI mouse brain. Following increased metabolism of endocannabinoids post-TBI, we observed increased expression of CB2, non-cannabinoid receptor Transient receptor potential vanilloid-1 (TRPV1), aquaporin 4 (AQP4), ionized calcium binding adaptor molecule 1 (IBA1), glial fibrillary acidic protein (GFAP), and acute reduction in cerebral blood flow (CBF). The BCB and pericontusional cortex showed altered endocannabinoid expressions and reduction in ventricular volume. Finally, loss of motor functions and induced anxiety behaviors were observed in these TBI mice. Taken together, our findings suggest endocannabinoids and their metabolizing enzymes play an important role in the brain and BCB integrity and highlight the need for more extensive studies on these mechanisms.


Subject(s)
Antineoplastic Agents , Brain Injuries, Traumatic , Brain Injuries , Mice , Humans , Animals , Endocannabinoids/metabolism , Brain/metabolism , Brain Injuries, Traumatic/complications , Receptor, Cannabinoid, CB1/metabolism
3.
Front Neurosci ; 16: 791035, 2022.
Article in English | MEDLINE | ID: mdl-35645722

ABSTRACT

Spontaneous Intracerebral hemorrhage (ICH) is a devastating injury that accounts for 10-15% of all strokes. The rupture of cerebral blood vessels damaged by hypertension or cerebral amyloid angiopathy creates a space-occupying hematoma that contributes toward neurological deterioration and high patient morbidity and mortality. Numerous protocols have explored a role for surgical decompression of ICH via craniotomy, stereotactic guided endoscopy, and minimally invasive catheter/tube evacuation. Studies including, but not limited to, STICH, STICH-II, MISTIE, MISTIE-II, MISTIE-III, ENRICH, and ICES have all shown that, in certain limited patient populations, evacuation can be done safely and mortality can be decreased, but functional outcomes remain statistically no different compared to medical management alone. Only 10-15% of patients with ICH are surgical candidates based on clot location, medical comorbidities, and limitations regarding early surgical intervention. To date, no clearly effective treatment options are available to improve ICH outcomes, leaving medical and supportive management as the standard of care. We recently identified that remote ischemic conditioning (RIC), the non-invasive, repetitive inflation-deflation of a blood pressure cuff on a limb, non-invasively enhanced hematoma resolution and improved neurological outcomes via anti-inflammatory macrophage polarization in pre-clinical ICH models. Herein, we propose a pilot, placebo-controlled, open-label, randomized trial to test the hypothesis that RIC accelerates hematoma resorption and improves outcomes in ICH patients. Twenty ICH patients will be randomized to receive either mock conditioning or unilateral arm RIC (4 cycles × 5 min inflation/5 min deflation per cycle) beginning within 48 h of stroke onset and continuing twice daily for one week. All patients will receive standard medical care according to latest guidelines. The primary outcome will be the safety evaluation of unilateral RIC in ICH patients. Secondary outcomes will include hematoma volume/clot resorption rate and functional outcomes, as assessed by the modified Rankin Scale (mRS) at 1- and 3-months post-ICH. Additionally, blood will be collected for exploratory genomic analysis. This study will establish the feasibility and safety of RIC in acute ICH patients, providing a foundation for a larger, multi-center clinical trial.

4.
Cancer Med ; 11(6): 1573-1586, 2022 03.
Article in English | MEDLINE | ID: mdl-35137551

ABSTRACT

Understanding the complex tumor microenvironment is key to the development of personalized therapies for the treatment of cancer including colorectal cancer (CRC). In the past decade, significant advances in the field of immunotherapy have changed the paradigm of cancer treatment. Despite significant improvements, tumor heterogeneity and lack of appropriate classification tools for CRC have prevented accurate risk stratification and identification of a wider patient population that may potentially benefit from targeted therapies. To identify novel signatures for accurate prognostication of CRC, we quantified gene expression of 12 immune-related genes using a medium-throughput NanoString quantification platform in 93 CRC patients. Multivariate prognostic analysis identified a combined four-gene prognostic signature (TGFB1, PTK2, RORC, and SOCS1) (HR: 1.76, 95% CI: 1.05-2.95, *p < 0.02). The survival trend was captured in an independent gene expression data set: GSE17536 (177 patients; HR: 3.31, 95% CI: 1.99-5.55, *p < 0.01) and GSE14333 (226 patients; HR: 2.47, 95% CI: 1.35-4.53, *p < 0.01). Further, gene set enrichment analysis of the TCGA data set associated higher prognostic scores with epithelial-mesenchymal transition (EMT) and inflammatory pathways. Comparatively, a lower prognostic score was correlated with oxidative phosphorylation and MYC and E2F targets. Analysis of immune parameters identified infiltration of T-reg cells, CD8+ T cells, M2 macrophages, and B cells in high-risk patient groups along with upregulation of immune exhaustion genes. This molecular study has identified a novel prognostic gene signature with clinical utility in CRC. Therefore, along with prognostic features, characterization of immune cell infiltrates and immunosuppression provides actionable information that should be considered while employing personalized medicine.


Subject(s)
CD8-Positive T-Lymphocytes , Colorectal Neoplasms , CD8-Positive T-Lymphocytes/pathology , Colorectal Neoplasms/pathology , Gene Expression Regulation, Neoplastic , Humans , Prognosis , Tumor Microenvironment/genetics
5.
Neurochem Int ; 150: 105192, 2021 11.
Article in English | MEDLINE | ID: mdl-34560175

ABSTRACT

Mitochondria are dynamic organelles responsible for cellular energy production. Besides, regulating energy homeostasis, mitochondria are responsible for calcium homeostasis, signal transmission, and the fate of cellular survival in case of injury and pathologies. Accumulating reports have suggested multiple roles of mitochondria in neuropathologies, neurodegeneration, and immune activation under physiological and pathological conditions. Mitochondrial dysfunction, which occurs at the initial phase of brain injury, involves oxidative stress, inflammation, deficits in mitochondrial bioenergetics, biogenesis, transport, and autophagy. Thus, development of targeted therapeutics to protect mitochondria may improve functional outcomes following traumatic brain injury (TBI) and intracerebral hemorrhages (ICH). In this review, we summarize mitochondrial dysfunction related to TBI and ICH, including the mechanisms involved, and discuss therapeutic approaches with special emphasis on past and current clinical trials.


Subject(s)
Brain Injuries, Traumatic/metabolism , Cerebral Hemorrhage/metabolism , Mitochondria/metabolism , Mitophagy/physiology , Animals , Autophagy/drug effects , Autophagy/physiology , Brain Injuries, Traumatic/drug therapy , Brain Injuries, Traumatic/pathology , Cerebral Hemorrhage/drug therapy , Cerebral Hemorrhage/pathology , Energy Metabolism/drug effects , Energy Metabolism/physiology , Free Radical Scavengers/pharmacology , Free Radical Scavengers/therapeutic use , Homeostasis/drug effects , Homeostasis/physiology , Humans , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Mitochondria/drug effects , Mitochondria/pathology , Mitophagy/drug effects , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Oxidative Stress/drug effects , Oxidative Stress/physiology
6.
Cancers (Basel) ; 13(16)2021 Aug 11.
Article in English | MEDLINE | ID: mdl-34439191

ABSTRACT

Non-small cell lung cancer (NSCLC) is a major subtype of lung cancer that accounts for almost 85% of lung cancer cases worldwide. Although recent advances in chemotherapy, radiotherapy, and immunotherapy have helped in the clinical management of these patients, the survival rate in advanced stages remains dismal. Furthermore, there is a critical lack of accurate prognostic and stratification markers for emerging immunotherapies. To harness immune response modalities for therapeutic benefits, a detailed understanding of the immune cells in the complex tumor microenvironment (TME) is required. Among the diverse immune cells, natural killer (NK cells) and dendritic cells (DCs) have generated tremendous interest in the scientific community. NK cells play a critical role in tumor immunosurveillance by directly killing malignant cells. DCs link innate and adaptive immune systems by cross-presenting the antigens to T cells. The presence of an immunosuppressive milieu in tumors can lead to inactivation and poor functioning of NK cells and DCs, which results in an adverse outcome for many cancer patients, including those with NSCLC. Recently, clinical intervention using modified NK cells and DCs have shown encouraging response in advanced NSCLC patients. Herein, we will discuss prognostic and predictive aspects of NK cells and DC cells with an emphasis on NSCLC. Additionally, the discussion will extend to potential strategies that seek to enhance the anti-tumor functionality of NK cells and DCs.

7.
Front Immunol ; 12: 660019, 2021.
Article in English | MEDLINE | ID: mdl-34046033

ABSTRACT

SARS-CoV-2 is the cause of a recent pandemic that has led to more than 3 million deaths worldwide. Most individuals are asymptomatic or display mild symptoms, which raises an inherent question as to how does the immune response differs from patients manifesting severe disease? During the initial phase of infection, dysregulated effector immune cells such as neutrophils, macrophages, monocytes, megakaryocytes, basophils, eosinophils, erythroid progenitor cells, and Th17 cells can alter the trajectory of an infected patient to severe disease. On the other hand, properly functioning CD4+, CD8+ cells, NK cells, and DCs reduce the disease severity. Detailed understanding of the immune response of convalescent individuals transitioning from the effector phase to the immunogenic memory phase can provide vital clues to understanding essential variables to assess vaccine-induced protection. Although neutralizing antibodies can wane over time, long-lasting B and T memory cells can persist in recovered individuals. The natural immunological memory captures the diverse repertoire of SARS-CoV-2 epitopes after natural infection whereas, currently approved vaccines are based on a single epitope, spike protein. It is essential to understand the nature of the immune response to natural infection to better identify 'correlates of protection' against this disease. This article discusses recent findings regarding immune response against natural infection to SARS-CoV-2 and the nature of immunogenic memory. More precise knowledge of the acute phase of immune response and its transition to immunological memory will contribute to the future design of vaccines and the identification of variables essential to maintain immune protection across diverse populations.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , SARS-CoV-2/physiology , Animals , Antibodies, Neutralizing/metabolism , Antibodies, Viral/metabolism , Disease Resistance , Epitopes, T-Lymphocyte/immunology , Humans , Immunity, Cellular , Immunologic Memory
8.
Sci Rep ; 11(1): 7561, 2021 04 07.
Article in English | MEDLINE | ID: mdl-33828127

ABSTRACT

Complex interactions in tumor microenvironment between ECM (extra-cellular matrix) and cancer cell plays a central role in the generation of tumor supportive microenvironment. In this study, the expression of ECM-related genes was explored for prognostic and immunological implication in clear cell renal clear cell carcinoma (ccRCC). Out of 964 ECM genes, higher expression (z-score > 2) of 35 genes showed significant association with overall survival (OS), progression-free survival (PFS) and disease-specific survival (DSS). On comparison to normal tissue, 12 genes (NUDT1, SIGLEC1, LRP1, LOXL2, SERPINE1, PLOD3, ZP3, RARRES2, TGM2, COL3A1, ANXA4, and POSTN) showed elevated expression in kidney tumor (n = 523) compared to normal (n = 100). Further, Cox proportional hazard model was utilized to develop 12 genes ECM signature that showed significant association with overall survival in TCGA dataset (HR = 2.45; 95% CI [1.78-3.38]; p < 0.01). This gene signature was further validated in 3 independent datasets from GEO database. Kaplan-Meier log-rank test significantly associated patients with elevated expression of this gene signature with a higher risk of mortality. Further, differential gene expression analysis using DESeq2 and principal component analysis (PCA) identified genes with the highest fold change forming distinct clusters between ECM-rich high-risk and ECM-poor low-risk patients. Geneset enrichment analysis (GSEA) identified significant perturbations in homeostatic kidney functions in the high-risk group. Further, higher infiltration of immunosuppressive T-reg and M2 macrophages was observed in high-risk group patients. The present study has identified a prognostic signature with associated tumor-promoting immune niche with clinical utility in ccRCC. Further exploration of ECM dynamics and validation of this gene signature can assist in design and application of novel therapeutic approaches.


Subject(s)
Carcinoma, Renal Cell/genetics , Extracellular Matrix/genetics , Kidney Neoplasms/genetics , Aged , Carcinoma, Renal Cell/mortality , Carcinoma, Renal Cell/therapy , Extracellular Matrix/immunology , Female , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Humans , Kaplan-Meier Estimate , Kidney Neoplasms/mortality , Kidney Neoplasms/therapy , Male , Middle Aged , Prognosis , Progression-Free Survival , Proportional Hazards Models , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology
9.
Cancers (Basel) ; 13(1)2021 Jan 05.
Article in English | MEDLINE | ID: mdl-33466402

ABSTRACT

Lung cancer is one of the leading causes of death worldwide. Cell death pathways such as autophagy, apoptosis, and necrosis can provide useful clinical and immunological insights that can assist in the design of personalized therapeutics. In this study, variations in the expression of genes involved in cell death pathways and resulting infiltration of immune cells were explored in lung adenocarcinoma (The Cancer Genome Atlas: TCGA, lung adenocarcinoma (LUAD), 510 patients). Firstly, genes involved in autophagy (n = 34 genes), apoptosis (n = 66 genes), and necrosis (n = 32 genes) were analyzed to assess the prognostic significance in lung cancer. The significant genes were used to develop the cell death index (CDI) of 21 genes which clustered patients based on high risk (high CDI) and low risk (low CDI). The survival analysis using the Kaplan-Meier curve differentiated patients based on overall survival (40.4 months vs. 76.2 months), progression-free survival (26.2 months vs. 48.6 months), and disease-free survival (62.2 months vs. 158.2 months) (Log-rank test, p < 0.01). Cox proportional hazard model significantly associated patients in high CDI group with a higher risk of mortality (Hazard Ratio: H.R 1.75, 95% CI: 1.28-2.45, p < 0.001). Differential gene expression analysis using principal component analysis (PCA) identified genes with the highest fold change forming distinct clusters. To analyze the immune parameters in two risk groups, cytokines expression (n = 265 genes) analysis revealed the highest association of IL-15RA and IL 15 (> 1.5-fold, p < 0.01) with the high-risk group. The microenvironment cell-population (MCP)-counter algorithm identified the higher infiltration of CD8+ T cells, macrophages, and lower infiltration of neutrophils with the high-risk group. Interestingly, this group also showed a higher expression of immune checkpoint molecules CD-274 (PD-L1), CTLA-4, and T cell exhaustion genes (HAVCR2, TIGIT, LAG3, PDCD1, CXCL13, and LYN) (p < 0.01). Furthermore, functional enrichment analysis identified significant perturbations in immune pathways in the higher risk group. This study highlights the presence of an immunocompromised microenvironment indicated by the higher infiltration of cytotoxic T cells along with the presence of checkpoint molecules and T cell exhaustion genes. These patients at higher risk might be more suitable to benefit from PD-L1 blockade or other checkpoint blockade immunotherapies.

10.
J Biochem Mol Toxicol ; 35(3): e22677, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33350548

ABSTRACT

Pesticides are globally used to eliminate pests from crops and plants. The increased use of pesticides has posed a serious threat to human health. This study evaluates the effects of pesticide exposure on pregnancy outcomes in tea garden workers (TGW). The acetylcholinesterase (AChE) activity was measured in the maternal blood, placenta, and cord blood of TGW and housewives (HWs). The placental structure and expression of hypoxia-inducible factor (HIF)-1α were also analyzed in TGW and HW groups delivering low birth weight (LBW) and normal birth weight (NBW) babies. A significantly decreased AChE activity was observed in maternal blood and cord blood in TGW as compared with HW in the LBW group. However, it did not change significantly in the NBW group (p < .05). The adjusted regression analysis of birth outcomes (birth weight, head circumference, infant's length, and ponderal index) revealed a significant and positive association with the levels of AChE activity in maternal blood, placenta, and cord blood in TGW (p < .05). The histological analysis showed significantly higher placental syncytial knots, chorangiosis, fibrinoid deposition, necrosis, and stromal fibrosis in the LBW group of TGW. Microinfarction, increased fibrinoid deposition, and atypical villi characteristics, such as mushroom-like structures, were observed during scanning electron microscopy along with increased HIF-1α expression in placental tissues of TGW exposed to pesticides. Results suggest that occupational pesticide exposure during pregnancy may decrease AChE activity and cause in utero pathological changes accompanied by an increased HIF-1α expression, which also contributes to placental insufficiency and fetal growth restriction.


Subject(s)
Acetylcholinesterase/blood , Maternal Exposure/adverse effects , Occupational Exposure/adverse effects , Pesticides/toxicity , Placenta/metabolism , Tea , Adult , Female , GPI-Linked Proteins/blood , Humans , Male , Placenta/pathology , Pregnancy
11.
EPMA J ; 11(4): 581-601, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33204369

ABSTRACT

The long evolutionary battle between humans and pathogens has played an important role in shaping the current network of host-pathogen interactions. Each organ brings new challenges from the perspective of a pathogen to establish a suitable niche for survival while subverting the protective mechanisms of the host. Lungs, the organ for oxygen exchange, have been an easy target for pathogens due to its accessibility. The organ has evolved diverse capabilities to provide the flexibility required for an organism's health and at the same time maintain protective functionality to prevent and resolve assault by pathogens. The pathogenic invasions are strongly challenged by healthy lung architecture which includes the presence and activity of the epithelium, mucous, antimicrobial proteins, surfactants, and immune cells. Competitively, the pathogens in the form of viruses, bacteria, and fungi have evolved an arsenal of strategies that can over-ride the host's protective mechanisms. While bacteria such as Mycobacterium tuberculosis (M. tuberculosis) can survive in dormant form for years before getting active in humans, novel pathogens can wreak havoc as they pose a high risk of morbidity and mortality in a very short duration of time. Recently, a coronavirus strain SARS-CoV-2 has caused a pandemic which provides us an opportunity to look at the host manipulative strategies used by respiratory pathogens. Their ability to hide, modify, evade, and exploit cell's processes are key to their survival. While pathogens like M. tuberculosis have been infecting humans for thousands of years, SARS-CoV-2 has been the cause of the recent pandemic. Molecular understanding of the strategies used by these pathogens could greatly serve in design of predictive, preventive, personalized medicine (PPPM). In this article, we have emphasized on the clinically relevant evasive strategies of the pathogens in the lungs with emphasis on M. tuberculosis and SARS-CoV-2. The molecular basis of these evasive strategies illuminated through advances in genomics, cell, and structural biology can assist in the mapping of vulnerable molecular networks which can be exploited translationally. These evolutionary approaches can further assist in generating screening and therapeutic options for susceptible populations and could be a promising approach for the prediction, prevention of disease, and the development of personalized medicines. Further, tailoring the clinical data of COVID-19 patients with their physiological responses in light of known host-respiratory pathogen interactions can provide opportunities to improve patient profiling and stratification according to identified therapeutic targets.

12.
Future Microbiol ; : 1483-1487, 2020 Nov 12.
Article in English | MEDLINE | ID: mdl-33179525

ABSTRACT

RT-PCR-based assays for the detection of SARS-CoV-2 have played an essential role in the current COVID-19 pandemic. However, the sample collection and test reagents are in short supply, primarily due to supply chain issues. Thus, to eliminate testing constraints, we have optimized three key process variables: RNA extraction and RT-PCR reactions, different sample types and media to facilitate SARS-CoV-2 testing. By performing various validation and bridging studies, we have shown that various sample types such as nasopharyngeal swab, bronchioalveolar lavage and saliva, collected using conventional nasopharyngeal swabs, ESwab or 3D-printed swabs and, preserved in viral transport media, universal transport media, 0.9% sodium chloride or Amies media are compatible with RT-PCR assay for COVID-19. Besides, the reduction of PCR reagents by up to fourfold also produces reliable results.

13.
PLoS One ; 15(10): e0240976, 2020.
Article in English | MEDLINE | ID: mdl-33075099

ABSTRACT

The extensively employed limited-gene coverage NGS panels lead to clinically inadequate molecular profiling of myeloid neoplasms. The aim of the present investigation was to assess performance and clinical utility of a comprehensive DNA panel for myeloid neoplasms. Sixty-one previously well characterized samples were sequenced using TSO500 library preparation kit on NextSeq550 platform. Variants with a VAF ≥ 5% and a total read depth of >50X were filtered for analysis. The following results were recorded-for clinical samples: clinical sensitivity (97%), specificity (100%), precision (100%) and accuracy (99%) whereas reference control results were 100% for analytical sensitivity, specificity, precision and accuracy, with high intra- and inter-run reproducibility. The panel identified 880 variants across 292 genes, of which, 749 variants were in genes not covered in the 54 gene panel. The investigation revealed 14 variants in ten genes, and at least one was present in 96.2% patient samples that were pathogenic/ likely pathogenic in myeloid neoplasms. Also, 15 variants in five genes were found to be pathogenic/ likely pathogenic in other tumor types. Further, the TMB and MSI scores ranged from 0-7 and 0-9, respectively. The high analytical performance and clinical utility of this comprehensive NGS panel makes it practical and clinically relevant for adoption in clinical laboratories for routine molecular profiling of myeloid neoplasms.


Subject(s)
Genetic Variation , High-Throughput Nucleotide Sequencing/methods , Leukemia, Myeloid/genetics , Myelodysplastic Syndromes/genetics , Myeloproliferative Disorders/genetics , Aged , Cost-Benefit Analysis , Female , Gene Regulatory Networks , Humans , Male , Microsatellite Instability , Mutation , Sequence Analysis, DNA , Time Factors
14.
J Cell Mol Med ; 24(21): 12869-12872, 2020 11.
Article in English | MEDLINE | ID: mdl-33058425

ABSTRACT

Considering lack of target-specific antiviral treatment and vaccination for COVID-19, it is absolutely exigent to have an effective therapeutic modality to reduce hospitalization and mortality rate as well as to improve COVID-19-infected patient outcomes. In a follow-up study to our recent findings indicating the potential of Cannabidiol (CBD) in the treatment of acute respiratory distress syndrome (ARDS), here we show for the first time that CBD may ameliorate the symptoms of ARDS through up-regulation of apelin, a peptide with significant role in the central and peripheral regulation of immunity, CNS, metabolic and cardiovascular system. By administering intranasal Poly (I:C), a synthetic viral dsRNA, while we were able to mimic the symptoms of ARDS in a murine model, interestingly, there was a significant decrease in the expression of apelin in both blood and lung tissues. CBD treatment was able to reverse the symptoms of ARDS towards a normal level. Importantly, CBD treatment increased the apelin expression significantly, suggesting a potential crosstalk between apelinergic system and CBD may be the therapeutic target in the treatment of inflammatory diseases such as COVID-19 and many other pathologic conditions.


Subject(s)
Apelin/metabolism , Cannabidiol/pharmacology , Respiratory Distress Syndrome/drug therapy , Administration, Intranasal , Animals , Lung/drug effects , Lung/pathology , Male , Mice, Inbred C57BL , Poly I-C/toxicity , Respiratory Distress Syndrome/chemically induced , Respiratory Distress Syndrome/metabolism , Respiratory Distress Syndrome/pathology
15.
J Biochem Mol Toxicol ; 35(2): e22646, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33049096

ABSTRACT

Chromosomal aberrations (CAs) are an important tool for assessment of exposure to pesticides. Genotoxic potential of pesticides is a principal risk factor for long-term health effects. The present study was aimed toward the assessment of CAs among agricultural workers exposed to pesticides and comparison with nonagricultural workers not exposed to pesticides. A total of 296 subjects were enrolled in the study: exposed (n = 148) and nonexposed subjects (n = 148) from Punjab. A significantly high frequency of aberrations was seen in peripheral blood lymphocytes of exposed subjects as compared with nonexposed ones. Most CAs were present as loss (aneuploidy) and were observed significantly in subjects having a history of alcohol consumption. It can be, thus, concluded that agricultural workers exposed to a mixture of pesticides, in addition to being alcoholic, are at a greater risk of genotoxic damage. It is highly recommended that the agricultural workers are educated regarding the potential hazards of occupational exposure to pesticides.


Subject(s)
Chromosome Aberrations , Farmers , Occupational Exposure , Pesticides/toxicity , Case-Control Studies , Female , Humans , India , Male , Middle Aged
16.
Biomedicines ; 8(10)2020 Sep 29.
Article in English | MEDLINE | ID: mdl-33003373

ABSTRACT

Studying the complex molecular mechanisms involved in traumatic brain injury (TBI) is crucial for developing new therapies for TBI. Current treatments for TBI are primarily focused on patient stabilization and symptom mitigation. However, the field lacks defined therapies to prevent cell death, oxidative stress, and inflammatory cascades which lead to chronic pathology. Little can be done to treat the mechanical damage that occurs during the primary insult of a TBI; however, secondary injury mechanisms, such as inflammation, blood-brain barrier (BBB) breakdown, edema formation, excitotoxicity, oxidative stress, and cell death, can be targeted by therapeutic interventions. Elucidating the many mechanisms underlying secondary injury and studying targets of neuroprotective therapeutic agents is critical for developing new treatments. Therefore, we present a review on the molecular events following TBI from inflammation to programmed cell death and discuss current research and the latest therapeutic strategies to help understand TBI-mediated secondary injury.

17.
J Neuroinflammation ; 17(1): 286, 2020 Sep 30.
Article in English | MEDLINE | ID: mdl-32998763

ABSTRACT

The coronavirus disease-19 (COVID-19) pandemic is an unprecedented worldwide health crisis. COVID-19 is caused by SARS-CoV-2, a highly infectious pathogen that is genetically similar to SARS-CoV. Similar to other recent coronavirus outbreaks, including SARS and MERS, SARS-CoV-2 infected patients typically present with fever, dry cough, fatigue, and lower respiratory system dysfunction, including high rates of pneumonia and acute respiratory distress syndrome (ARDS); however, a rapidly accumulating set of clinical studies revealed atypical symptoms of COVID-19 that involve neurological signs, including headaches, anosmia, nausea, dysgeusia, damage to respiratory centers, and cerebral infarction. These unexpected findings may provide important clues regarding the pathological sequela of SARS-CoV-2 infection. Moreover, no efficacious therapies or vaccines are currently available, complicating the clinical management of COVID-19 patients and emphasizing the public health need for controlled, hypothesis-driven experimental studies to provide a framework for therapeutic development. In this mini-review, we summarize the current body of literature regarding the central nervous system (CNS) effects of SARS-CoV-2 and discuss several potential targets for therapeutic development to reduce neurological consequences in COVID-19 patients.


Subject(s)
Coronavirus Infections/complications , Nervous System Diseases/virology , Pneumonia, Viral/complications , Betacoronavirus , COVID-19 , Humans , Pandemics , SARS-CoV-2
18.
J Mol Diagn ; 22(10): 1294-1299, 2020 10.
Article in English | MEDLINE | ID: mdl-32738298

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) testing has lagged in many countries because of test kit shortages and analytical process bottlenecks. This study investigated the feasibility and accuracy of a sample pooling approach for wide-scale population screening for coronavirus disease 2019. A total of 940 nasopharyngeal swab samples (934 negative and 6 positive) previously tested for SARS-CoV-2 were deidentified and assigned random numbers for analysis, and 94 pools of 10 samples each were generated. Automated RNA extraction, followed by RT-PCR, was performed in a 96-well plate. Positive pools were identified, and the individual samples were reanalyzed. Of the 94 pools/wells, four were positive [Ct values: N (22.7 to 28.3), ORF1ab (23.3 to 27.2), and internal control (34.4 to 35.4)]. The 40 samples comprising the four pools were identified and reanalyzed individually; six samples were positive, with Ct values of N gene, ORF1ab, and internal control comparable to their respective wells. Additional experiments were performed on samples with high Ct values, and overall results showed 91.6% positive and 100% negative agreement compared with individual testing approach. Thus, 940 samples were tested in 148 reactions compared with 940 reactions in routine screening. The sample pooling strategy may help catch up with testing needs and minimal turnaround times and facilitate enormous savings on laboratory supplies, extraction, and PCR kits currently in short supply.


Subject(s)
Betacoronavirus/genetics , Clinical Laboratory Techniques/standards , Coronavirus Infections/diagnosis , Diagnostic Tests, Routine/methods , Mass Screening/methods , Pneumonia, Viral/diagnosis , RNA, Viral/genetics , Specimen Handling/standards , Betacoronavirus/isolation & purification , COVID-19 , COVID-19 Testing , Coronavirus Infections/genetics , Coronavirus Infections/virology , Humans , Pandemics , Pneumonia, Viral/genetics , Pneumonia, Viral/virology , RNA, Viral/analysis , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2
19.
EPMA J ; 11(2): 217-250, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32549916

ABSTRACT

Cannabis-inspired medical products are garnering increasing attention from the scientific community, general public, and health policy makers. A plethora of scientific literature demonstrates intricate engagement of the endocannabinoid system with human immunology, psychology, developmental processes, neuronal plasticity, signal transduction, and metabolic regulation. Despite the therapeutic potential, the adverse psychoactive effects and historical stigma, cannabinoids have limited widespread clinical application. Therefore, it is plausible to weigh carefully the beneficial effects of cannabinoids against the potential adverse impacts for every individual. This is where the concept of "personalized medicine" as a promising approach for disease prediction and prevention may take into the account. The goal of this review is to provide an outline of the endocannabinoid system, including endocannabinoid metabolizing pathways, and will progress to a more in-depth discussion of the therapeutic interventions by endocannabinoids in various neurological disorders.

20.
Environ Sci Pollut Res Int ; 25(12): 11981-11986, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29450776

ABSTRACT

Glutathione S-transferases are important detoxification enzymes involved in the metabolism of endogenous as well as exogenous compounds. Individuals differ in metabolic capacity due to inherited genetic variations. Due to the polymorphism exhibited by GSTT1 and GSTM1 that results in the complete loss of function, the present study was aimed towards the determination of the frequency distribution of GSTT1 and GSTM1 in agricultural workers in Punjab, India. The study aimed to investigate their contribution in susceptibility to increased disease risk. A total of 513 subjects were included in this study, out of which 250 were agriculture workers and 263 were non-exposed occupationally. GSTT1 and GSTM1 null-genotype distribution was analyzed through multiplex-PCR method. Complete gene deletion in either of the genes was strongly associated with an increased risk (OR = 1.8; 95% CI = 1.3-2.6; p < 0.0008) of DNA/cytogenetic damage, cancer, infertility, and many other serious health effects. Therefore, homozygous deletion in GSTT1 or GSTM1 could play a modulatory role in health of workers with long-term exposure to pesticides.


Subject(s)
DNA Damage , Glutathione Transferase/metabolism , Pesticides/chemistry , Polymorphism, Genetic , Farmers , Genotype , Glutathione Transferase/chemistry , Humans , India , Risk
SELECTION OF CITATIONS
SEARCH DETAIL